7 Hằng Đẳng Thức Đáng Nhớ Trong Toán Học

     

Những hằng đẳng thức đáng nhớ chắc quen thuộc gì với các bạn . Hôm nay Kiến vẫn nói kỹ hơn về 7 hằng đẳng thức đặc biệt : bình phương của một tổng, bình phương của một hiệu, hiệu của hai bình phương, lập phương của một tổng, lập phương của một hiệu, tổng nhị lập phương và sau cùng là hiệu nhị lập phương. Các bạn cùng tìm hiểu thêm nhé.

Bạn đang xem: 7 hằng đẳng thức đáng nhớ trong toán học

A. 7 hằng đẳng thức đáng nhớ

1. Bình phương của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )2= A2+ 2AB + B2.

Ví dụ:

a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32= a2+ 6a + 9.b) Ta bao gồm x2+ 4x + 4 = x2+ 2.x.2 + 22= ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là những biểu thức tùy ý, ta có: ( A - B )2= A2- 2AB + B2.

*

3. Hiệu nhì bình phương

Với A, B là những biểu thức tùy ý, ta có: A2- B2= ( A - B )( A + B ).

*

4. Lập phương của một tổng

Với A, B là những biểu thức tùy ý, ta có: ( A + B )3= A3+ 3A2B + 3AB2+ B3.

*

5. Lập phương của một hiệu.

Với A, B là các biểu thức tùy ý, ta có: ( A - B )3= A3- 3A2B + 3AB2- B3.

Ví dụ :

a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3dưới dạng lập phương của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x - 1 )3

= ( 2x )3- 3.( 2x )2.1 + 3( 2x ).12- 13

= 8x3- 12x2+ 6x - 1

b) Ta tất cả : x3- 3x2y + 3xy2- y3

= ( x )3- 3.x2.y + 3.x. Y2- y3

= ( x - y )3

6. Tổng nhì lập phương

Với A, B là các biểu thức tùy ý, ta có: A3+ B3= ( A + B )( A2- AB + B2).

Chú ý: Ta quy ước A2- AB + B2là bình phương thiếu thốn của hiệu A - B.

Xem thêm: Hướng Dẫn Update Card Màn Hình Nvidia, Cách Cài Đặt Và Cập Nhật Driver Cho Card Màn Hình

Ví dụ:

a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2- x + 1 ) dưới dạng tổng hai lập phương.

Hướng dẫn:

a) Ta có: 33+ 43= ( 3 + 4 )( 32- 3.4 + 42) = 7.13 = 91.b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13= x3+ 1.

7. Hiệu hai lập phương

Với A, B là các biểu thức tùy ý, ta có: A3- B3= ( A - B )( A2+ AB + B2).

Chú ý: Ta quy mong A2+ AB + B2là bình phương thiếu hụt của tổng A + B.

Ví dụ:

a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) dưới dạng hiệu nhì lập phương

Hướng dẫn:

a) Ta có: 63- 43= ( 6 - 4 )( 62+ 6.4 + 42) = 2.76 = 152.b) Ta gồm : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3- ( 2y )3= x3- 8y3.

B. Bài tập từ bỏ luyện về hằng đẳng thức

Bài 1.Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

Hướng dẫn:

a) Áp dụng các hằng đẳng thức ( a - b )( a2+ ab + b2) = a3- b3.

( a - b )( a + b ) = a2- b2.

Khi kia ta có ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3- 33+ x( 22- x2) = 0 ⇔ x3- 27 + x( 4 - x2) = 0

⇔ x3- x3+ 4x - 27 = 0

⇔ 4x - 27 = 0

Vậy x=

*
.

Xem thêm: Làm Thế Nào Kiếm 500K 1 Ngày Mới 100%, Ý Tưởng Làm Gì Để Kiếm 500K 1 Ngày

b) Áp dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2- b3

( a + b )3= a3+ 3a2b + 3ab2+ b3

( a - b )2= a2- 2ab + b2

Khi đó ta có: ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

⇔ ( x3+ 3x2+ 3x + 1 ) - ( x3- 3x2+ 3x - 1 ) - 6( x2- 2x + 1 ) = - 10

⇔ 6x2+ 2 - 6x2+ 12x - 6 = - 10

⇔ 12x = - 6

Vậy x=

*

Bài 2:Rút gọn biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

2x2+ 4xy B. – 8y2+ 4xy- 8y2 D. – 6y2+ 2xy

Hướng dẫn

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2– (2y)2–

A = x2– 4y2– x2+ 4xy - 4y22

A = -8y2+ 4xy

Hãy ghi nhớ nó nhé

*

Những hằng đẳng thức đáng nhớ trên rất đặc trưng tủ kỹ năng của bọn họ . Gắng nên các bạn hãy nghiên cứu và phân tích và ghi ghi nhớ nó nhé. Các đẳng thức đó giúp họ xử lý các bài toán dễ và cực nhọc một phương pháp dễ dàng, chúng ta nên làm đi làm lại để bản thân rất có thể vận dụng giỏi hơn. Chúc các bạn thành công và chăm chỉ trên con phố học tập. Hẹn chúng ta ở những bài bác tiếp theo